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FOREWORD

This is the second annual report submitted in accordance with
the provisions of Contract No. 950670, "Investigation of Optimization
of Attitude Control Systems". It summarizes the research activities of
the period September 15, 1965 through June 30, 1966.

This report is in three parts. The first part outlines the pro-
gress during the reporting year. The technical discussions are given
in Parts B and C, in which the conclusions of the results and the plan

of future work are included.
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PART A

GENERAL DISCUSSION

1. INTRODUCTION

This annual report summarizes the results of the research achieved
during the period September 15, 1965 through June 30, 1966. Some of
the material included in this report was presented in the two previous
quarterly progress reports. The repetition makes this annual report
an independent document so that no references to the previous progress

reports are necessary.

2. TECHNICAL PROGRESS

In the design of an autopilot for a space vehicle which is capable
of performing the task of soft landing, the problem of optimal control
with bounded phase-coordinate and bounded control is relevant. By
using the necessary and sufficient conditlons, the general theory for
linear autonomous systems was developed. A method of determining the
optimal control, which is a direct application of the theory, was
derived. As an illustretion, two particular systems were studied in
detail. The first example deals with the time-optimal control of an
unstable booster with actuator position and rete limits. The results,
when evaluated with numerical data, agree with those that have been
published by other authors using different methods. The second

example considers & flexible vehicle subject to wind disturbances.



This problem is more compliceted then the first one since the ratio of
actuator position to its rate pleys an important role in the extremel
control lsw. The control varieble is found to enter and exit from its
bound as often as the time duration permits, which is a naturel result
of the oscilletory behasvior of the system. In both exsmples the opti-
mal controls are expressed e&s explicit time functions. These results
and their conclusions together with the future research plen are
presented in Part B.

The optimel control of antenna pointing direction ves investigated.
The problem is formulated in such a menner thet the pointing direction
is kept within &n accepted region with meximum probebility gll the time.
Essentially the controller forces the entenna to point in & desired
direction by minimizing the error rate of trensmission of information
during the entire flight journey of the spece vehicle. In the study, en
assumption of the Markovien property of the rendom jittering of the an-
tenna is made. In sddition, the disturbences in eny two smell -:onsecu-
tive time intervals are assumed to be statistically independent. Thus
the probability distribution satisfies the backwerd diffusion equetion,
and the problem reduces to the determination of a controller which
maximizes the probability. A computeational scheme based on an
iteration procedure wes developed. The technical discussion and the
conclusions of the results, as well as the plan of future work, sre

given in Part C.

3. PROFESSIONAL CONTRIBUTORS

Professional personnel contributing to the progress during the
reporting year are &s follows:

J.Y.5. Luh, Principal Investigator



G.E. O'Connor, Staff Researcher

J.S. Shafran, Staff Researcher
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‘PART B

OPTIMAL CONTROL IN BOUNDED PHASE-COORDINATE PROCESSES

1. INTRODUCTION

In recent years, mich effort has been epplied to optimel control
problems with bounded phese-coordinetes. Among the published literature,
Gemkrelidze [1.2] treeted the problem besed on Pontryagin's meximum
principle. Berkovitz [3], however, showed that Gemkrelidze's results
can he echieved by solving the relevant calculus of veriastions problem.
Dreyfus [4] studied the same problem by meens of the dynamic programming
formulation. His results are in agreement with thet of Berkovitz [5].
Among all’ the studies, sufficiency conditions were virtuslly ignored.
For practical applications, even when solutions do exist, the necessary
conditions derived by the verious authors are difficult to apply.

For & more restricted class of problems, Chang derived a simpler
necessary condition [6], and the existence theorems based on an exten-
silon of Ascoli's Theorem [7]. For linear time-optimal control systems
with & convex restreint set, the necessary condition is also sufficient.
An elegant proof of the necessity of the condition cen be deduced from
Neustedt's recent work [8] while & rigorous proof of the sufficiency
is given by Russell [9]. This condition is an improvement on
Gamkrelidze's result. It establishes the fact that the normal vector
eppearing in the modified adjoint differential equation is alweys out-
ward with respect to the set of attainability, end hence the necessary

end sufficient condition is relatively easy to epply.



As to the computational aspects of the problem, there are essenti-
ally two classes of methods. One class includes the method of the
gradient, steepest-descent or its equivalent, which was studied by
Dreyfus [4], Denham [10, 11] and Bryson [12] using the necessary
conditions of the optimal control, and by Paiewonsky, et al. [13] using
conditions both of the optimal control and from the calculus of
variations. The other class was discussed by Kahne [14], Ho and Brentani
[15], and Nagata, et al. [16]. Because of the nature of the problem,
each computational procedure requires either an iterstive solution or a
simulation on a sizable computer. Since a new camputation is required
for each different initial state, the possibility of on-line operation
using currently aveilable facilities is out of the question.

An ideal approach is to synthesize a so-called closed-loop optimel
controller so that the control input is a function of the current state.
This problem, however, is too difficult to solve. An alternative approach
is to obtain the so-called open-loop optimal control es an explicit time
function for each initial state. This problem, although not so difficalt
as the zlosed-loop optimel control problem, is complicated enough that
no published results are known. This report presents a new method of
solving the open-loop control problem with a bounded phase-coordinate.

In the following sections, a discussion of the problem is presented.
Section 2 defines the problem and outlines the background results.
Section 3 discusses the method of solving the problem through a reformula-
tion. The analysis is besed on the necessary and sufficient condition of
the optimal control. The method is then applied to the time-optimal
control of an unstable booster. The complete solution is given in Section k4.
The extremel control problem for an oscillatory plant is presented in

Section 5. The study of this problem is exhaustive since it includes




almost all possible ratios of control amplitude to its rete. Section 6
gives the conclusions of the results while Section 7 outlines the plan

of future vork.

2. PROBLEM STATEMENT AND BACKGROUND RESULTS

Consider a linear autonomous control process as described by the
differential system
X = Ax + Bu(t) (1)
in R® on the interval [o,tl]. A end B are n Sy n and n by m constant
matrices, respectively. Let G be a closed convex subset of Rn and Q

be & non-empty restraint set :I.n.Rm glven by |ui| < c,, 1=1,2,...,m.

1
It 18 further assumed that the system (1) is normel, i.e. the vectors
Bw, ABw,..., An'J‘BH are linearly independent where w is a vector having
the direction of an edge of the polyhedron f). The problem is to choose
an admissible control u(t) € Q on [O,tl] which steers the system (1)
from a given initial state x(0) = x, to x(tl) = 0, such that the response
x(t) € ¢ for a11 te [0, tl] and t, 1s minimel.
Gamkrelidze [1,2] and others have given necessary conditions that the
extremel controls must satisfy. These necessary conditions imply that
an extremal control corresponds to & solution of a set of adjoint equations .
The adjoint solution is allowed certain Jjump discontinuities and hence
depends on & number of parameters representing:
(2) The megnitudes of the possible jumps that appear in the adjoint solu-
tion, and
(b) The time lengths of the arcs of the corresponding trajectory which
lie on aG, the boundary of the phese coordinate restraint set G.

The discontinuities are allowed at points where the trajectory (corres-

ponding to an extremal control) enters upon or exits from an arc on 3G.
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These are the general results. They do not, however, indicate
specifically at which points the trajectory enters upon the arc, and
vhen the trajectory must exit from it. This peper attempts to investi-
gate these questions. In the following section, a reformulation of the
problem is introduced which will lead to a method that determines extre-
mel controls as explicit time functiona. Then these functions can be
represented in terms of adjoint solutions. A sufficiency condition given

by Russell [9] shows that the solutions so obtained are optimal controls.

3. REFORMULATION OF THE PROBLEM

For a linear autonomous process, the calculation of trajectories
by the "backing out of the target" procedure is valid. To reverse the
time sense, define T = t, - tand 7 ¢ [O,tl]. Then the system (1)
becomes

dx/dt = -Ax - Bu(7), (2)
with initiel condition x(t) = 0 at T = 0. Let

k(1) = {x(7)|x(%) = -ﬁr; e-A(T-s) B u(s) ds, x(1) € G for all Te [O,tl],

u(s) € Q for all se (0,711}
be a set of attainability at 7, then K(7) is the set of all points that
can be attained in time T from x(0) = O using admissible controls.

If T is small enough then K(t) is within the interior of G, and it
is known that K(1) is compact, convex, and continuous in 7. Moreover,
the trensversality condition applies at 3K(T), the boundary of K(Tt);
and for each point on 3K(t), there is a corresponding unique and
admissible extremal control [ 17 J.

When T is large, some segments of dK(t) may coincide with 3G. Since

G is convex by hypothesis, then K(7) is egain convex; and Russell



[9, pp. 22-53) showed that:

(a) at 3K(t), the transversality condition is sﬂll valid if the
corresponding adjoint system is modified, and

(b) corresponding to each point on 3K(T), there is a unique admissible
extremal control.
Thus, by (a), for every unit vector T in B® there is a state vector

x corresponding to a point on dK(1) for a fixed T such that the projection
P of x onto 1:

P=(M, x) = -j': 1 e A(z-5) B u(s) ds
is a maximum, where ()' = transpose of (), and u(s) € Q for all se [0,7].
By (2) and (b), the corresponding unique admissible extremel control
u*(s) » vhich maximizes P, steers the linear, autonomous, normel system
(2) from the origin to the furthest point x in the direction 1 in a
fixed time 7.

This is equivelent to the case that, with the time sense reversed
once more, the same extremal control will steer the system from x to the
origin in a fixed time T wvhere T is minimal. Russell's sufficiency condi-
tion [9] shows that the unit vector 1 is the adjoint vector at time T,
and the extremal control so obtained is the time-optimal control.

" Thus, the problem of determining 2 time-optimal controller is now
reduced to obtaining an admissible extremal control that maximizes the
projection P of a state vector x at a fixed time T (in the sense of
"becking out of the target") onto a unit vector 7. In so doing, it is
possible to find an extremcl control for every fixed finite time T and
for every unit vector T, and hence to express the extremal controls as
explicit time functions. Once this 1s completed, the state vector
x = x(7) can be computed from the variation of perameters formula with

the corresponding extremcl control.




The domain of controllebility of the system can be determined by
considering the limit of x(t) as T approaches infinity. If all the com-
ponents of x(T) approach 1 ® as 7 approaches «® then the domein of control-
lability 1s the entire state space. If some components of x(T) approach
finite limiting values, the domein of controllability is a proper subset

of the state space, and the boundary of this domain can be determined

from the limits of x(7).

4. THE UNSTABLE BOOSTER CONTROL PROBLFM

Friedland [18] and Toohey M19] have studied the optimal autopilot
design problem of an unstable booster with acturtor position and rate
limits. Their simplified plant transfer function consists of three
yoles in the frequency domain: one at the origin and two on the reel
axis with equel magnitude but opposite signs. They simplified the problem
further by cancelling the pole at the origin through physicel design.
Essentially the simplified and normalized unstable booster is described

by a second order differential equation

H - x = alt)
or, in matrix notation

[ ] "~ -~

i:A;('i'bU.(t) (3)
in R2 with

-~ ]O01 - 0
.’:l - | » A=ty o] 22 =]y -
2 !

The problem is: (for a fixed value of u(0) which satisfies |u(0)]| < 1)
(2) To determine the domein of controllability (in Rz) in which every
point can be steered to the origin by & scalar control u(t) subject

to the constraints |u(t)| <1 ana |a(t)} < D on [0,=), and
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(b) To find a time-optimal control function for each initial state in
the domein of controllability.
This problem will be formulated as a bounded phase-coordinate pro-

blem and solved by the method described above.

4.1 Bounded Phsse-Coordinate Formulation of the Booster Problem

The system is augmented by defining x3(t) = u(t) and v(t) = a(t).

Then the system (3) can be rewritten as

x = Ax + b v(t) : (4)
where
x EX 010 o
X=X, =1 , A= |101} ,b=]|0
X3 u(t) 000 1

This is 2 bounded phese-coordinate problem (in the sense |x3| = lu| < 1)
in which the scalar veriable v(t) is required, subject to the constraint
|v(t)] <D on [0,t,], to steer system (4) from an initial state x(0) = x_
to x(tl) = 0 vith minimal t,.
To proceed by the method of "backing out of the target x = 0" we
write the system (4) with time sense reversed (by defining t = -t),
dx/dat = -A x(t) - b v(<) (5)
with x(0) = 0. By the variation of peremeters formula, the system (5)

has a solution _

Iz {1 - cosh (7-s)] v(s)ds
X(T) = ‘r; sinh (‘(-s) V(S)ds (6)

-‘r; v(s)ds

where |v(s)| < D is admissible on [0,7]. The adjoint system for the
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system (5) is

ay/at = - (-8)" ¥(7) = A"¥(7)
Gamkrelidze [1,2] showed that, in order to represent the extremel v as a
multiple of the signum of an adjoint solution for the bounded phase-
coordinate control problem, the adjoint system must be modified. Thus

a "total adjoint vector" p(T) must satisfy the relation

A’ p(1), 1f |x3(1‘)‘ <1

dp/dr = (7)

2’ p(x), it |x3(1)\ =1

010
in which A ={1 00
000

In so doing, the necessary conditions for v to be extremal can be
expressed as
v(7) = Dsgn Fp(7)’ (-b)]

or -v(7) = D sgn Mp,(7)] (8)

where:

(a) p(t) satisfies the system (7),

() pylr) = 0 1f |x(1)] = 1,

(¢) p(7) is ellowed certain jump discontinuities at endpoints of intervals
where |x3(r)| = 1 (for this problem, p, and p, are required to be
continuous and jumps can occur only in p3 since only x3 is restreined),
and

(a) +1, 1if Py >0

sgnpy =4 0, 1f p; =0 (9)
‘-1, ir Py <0

Thus, the solution of the system (7) can be written as

pl(‘l.’) = pl(o) cosh T + pa(o) sinh 1,
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pz(r) pl(o) sinh 7 + pz(b) cosh t, . (10)

pl(O) cosh T + pz(o) sinh T + k, 1if |x3(1)| <1,

(1)
E P - > 1 xy()) = 1,

vhere the value of the constent k in p3('r) depends upon the intervel in

vhich lx3(1)| <1, and upon p (0) and p,(0).

4.2 The Extremel Controls

To determine extremal controls as explicit time functions, form
the projection P as defined previously. Let the unit adjoint vector at
time T be

cos 6 cos @
T = gin 6 cos ¢ , el < x, |g| < x/2.
sin ¢
Then, by equations (6) and the definition of P,
P= IZ gls; 1, 6, ¢) v(s) as
in which
g(s; 1, 6, g) = cos ¥ [cos 6 - cos 6 cosh (1-8) + sin 6 sinh (7-8)]
- s8in g, (11)
and 1v(s)| < D is admissible on [0,%). By the trensversality condition
at x(t) on 3K(1), v(s) is extremsl on [0,1] if 1t meximizes P. By
equation (8), the only possible values for v(s) are + D and zero. When
‘x3| < 1, the system (4) is normal end hence the value of v can only be
either + D or -D. If v is zero on &n interval then by equations (8), (9)
and (10) the value of !x3! is one. This conclusion is in agreement with
Cheng's stetement [20] thet if the system is time-optimelly controlled,

then either u is extremal or du/dt is extremal.
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The function g(s; 7, 0, ¥) given by equation (11) has the property
that
g(s; 7, 8, ) = -gls; 7, n+ 6, - g);
hence it suffices to consider only half of the range of €. For conveni-

ence, choose -1 < 6 < 0. Then Pmay be written as

P=cos g [l 2(s; 7, 0, 9) [-v(s)] ds
where

f(s; T, 8, @) = cos 6 cosh (1-s) - cos 6 - sin 6 sinh (1-s) + tan ¢

(12)
To determine the form of the extremal v(s) that maximizes P, the
method given by Schmaedcke and Russell [21] can be used. For this parti-
cular problem, however, v(s) can be obtained by inspection from geometrical
reasoning. On the intervel O < s < T the function f(s; T, 6, @) is either
monotone or hes one maximum and no minims. In fact, for 0 < s < T and
lp! < n/2 there are two cases of interest. These are: (a) -3t/ <6 <0
and (b) -x < 6 < -3x/k.
In the case (a) the derivative df/ds < O so that f is monotome
decreasing in s.
In the case (b) £ has 2 maximum at s, = 7-tanh™t (tan 6). However
for tan-l(tanh T) < 6 < -3n/k where ‘ban'l(tanh t) > -x the value of
8 is negative.
Thus, for |¢| < 1t/2 and O <8 <t<® f is monotone decreasing in s if
-nt < tan'l(tanh T) < 6 < 0; or £ has a maximum at 8, = T- tanh-l(tan 8)
if -n<o< tan™! (tanh 1) < -3x/k. Furthermore, for any real k,
f(sm +k; 1,0, d)= f(sm -k; 7, 8, #) if -x < 6 < -3x/k,
hence £ is symmetric with respect to Bt Therefore, for a fixed 1, =

fixed 6 and a fixed g, f£(s; T, 6, @#) can be sketched on the interval
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0<s < 7. Two typical cases are shown below, one corrésponds to f
being monotone decreasing in s and the other to f having & maximum
> .
et some L 0
In the case shown in Fig. 1, the ranges are -3x/k < 6§ < 0 and

1/D< < f 3,/D; hence £ is monotone decreasing in 8. The form of extremal

By an inspection of the sketches in Fig. 1 with the basic requirement in

mind that either |v(8)| = D or Ju(s)| = 1 on the entire intervel 0 <s<m,

'- v(s) is
; D for 0 <8 <1/D
' : -v(s) = it x2>g>g; (13)
Oforl/D<s<=t .
. or
D for 0 <s<1/D
l -v(s) = 0 for 1/D <8 < 1 - 1n (o#+B) if g >g> ¢2;(1h)
: -D for 7 - 1n (a+B) <8 <7
| or
D for 0 <8 <71 - 1n (a+B)
| v(s) - i£ g, >8> 9, ;(15)
-D for T - In (a#8) <s <7
' or
Dfor 0<s<(7-10D)/2
| ~(s) = 1f ¢, > 8 > -x/2; (16)
-D for (7 - 1/D)/2<s <7
' vhere
gy =0
' g, = -ten'l[cos 8{cosh (1-1/D) - 1] - sin 6 sinh (1-1/D)},
l ¢3 - -tan"{cos 6[cosh (v/2-1/2D) - 1] - sin 6 sinh (1/2-1/2D)]},
. a = (cos 6 - tan #)/(cos 6 - sin 6), end
B = \(/ of - (cos 6 + sin 6)/(cos 6 - sin 6).
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it is easy to show that any deviation from the v(s) given above would

decrease the value of P.

For the case shown in Fig. 2, the ranges are
-x < tan"! (tanh 5/2D) < 6 < tan™ (tamh 3/D) < -3x/b
and .
tanh™! (tan 8) + 1/2D < v < b tanh™* (tan 6) -7/D;

hence f has a maximum at 8, T - tanh'l (tan 6). The form of the extre-

mal v(s) is
-D for 0 < s < (Zsm - 1/p)/3
-v(s) = D for (2sm -1/D)/3<s< (h-sm + 1/D)/3} if n/2 > g > 2.5
0 for (’-&sm +1/D)/3<s <7
or
=D for 0 < 8 < (25, - 1/D)/3 N
wle) ] D for (Zsm -1/D)/3<8< (ll-sm + 1/D)/3 | if g,>8>8,;
) o for (ks +1/D)/3< 8 <7 - 1n (a+ p)
\-Dfor'r-ln(a+a)_<_s_<_1:
or J
(D for 0 < s < (2s_ - 1/D)/3 )
vla) - 4 D for (2s - 1/D)/3< s < (ks + 1/D)/3 (1f B > @ > -n/2;

0 for (hs.m +1/D)/3< s <7 - (2/D)

\-D for T - (2/D) <s< =«
-1
vhere ¢, = -tan {cos 6 [cosh 2/D - 1] - sin 6 sinh 2/D}, and all other
parameters were defined previously. By an inspection of Fig. 2 with the
same sargument given in the previous case, the extremal v(s) must have the
present form.
This procedure was carried out for all the possible cases. It was

found that the extremsl v(s) reaches zero and leaves zero as many as four




¢ 3y¥n9id

1
]
~ " cl.m.p..:n._ G.m.h:m._
~ s | I// A S 7 S /\
I _///I\_ R D’
| | =~ o~ |
! L ! A “
| [ l [ 1 |
| [ ! U | !
| | | ' { | ] _
" (I ! 1o | _
0\ ) ! | ' ﬂll | ! | >
“ o ) L | _
UL | | ! . u
“_ ! wlw) IR O LU _2_
3 [ w|®
) _% D! i g c._w_ 3
n ! d wt e
| s 11 |= &1 wy
! ! “
i : ! 1
t ! I
Iy (s)a-
I !
1 !
|
s N\! !
i
'
|
(P 9'2'9)§ !

2/ -< ¢ 2 Yy ooy

] II
k_ | —
| I
| ot ! !
| |
|
I | I
[ _ _
y | [ f
_ \_
I ! “
I (s)n
! wff]  ofR
| '
| g -
11 M_...“ Em_
i |
I [}
_ []
| (8)A -
) |
| [}
] | “
| !
1
]
[}
!
($9%1'9)4 "

's2 ¢< 21

a4



18

times. Denote the time s at which such events occur by T , 1=1,...,4,

i
and let 7, = O and Tg = T Supposing the values of x3(s) = u(s) are such

that
lu(s)| < 1, if Ty S8< Ty 10 1=0,1, 2
lu(s)| = 1, if T2y + 158 < Tpy 40 3= 0, L.
Then
dp3/ds = d¢3/ds for 7, <8< T, L1, 1=0,1, 2;
p3(s) =0 for Toy+158< 25 + 2; J=0, 1.
It follows that choosing p3(5) to be continuous at T,, . ., (1 = 0,1,2)

requires p3(1'21 . l) = 0, and hence

p3(s) = ¢3(s) - *3("21 ' l) for 7,, <8< 1»1=0,1, 2.

2l +

With ps(s) so defined, the jump conditions have to be satisfied at Tpys

i=0,1, 2. Since 1 is the unit adjoint vector at AK(71), p3(T) = ¢3(T) =

= ﬂ3 = sin g.

Thus

(cos 6 [cosh (1-8) - cosh (7-7,)1-sinh 6[sinh (v-s)-stinh (v-7,)],
1£0<8 <1,

0, ift, <s<r*7

1 2’

B NCHAND ,‘ cos 6 [cosh (1-8) - cosh (1-13)]-81n 6{sinh (t-8)-sinh (1-13)],
cos @

i 12 <8< 13,

it T, <8 <T,

2

\

where

0, 1f |xy(v)] = lu(7)] <12

1, if |x3('r)‘ = |u(1’)‘ =1

cos 8 [cosh (1-8) - 1)-sin 6 sinh (t-8) + tan @ + & (tan g,- tend),



|
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Using this expression for p3(s;1,92¢),it has at most one jump disconti-
nuitity et s = 1 (equivalently at 3K(7) ), and this happens only when
!x3( t)| = Ju(r)} = 1. Furthermore, the explicit form of the extremsl v(s)

can be expressed as

-v(s)

D sgn [P3(55 T, 0, ﬁ)]
D sgn [p3(s; T, 6, ¥/cos @]

since cos @ is positive on -x/2 < ¥ < /2. Finally, by Russell's suffi-

ciency comiition [9], the extremsl v(s) is ulso the time-optimal v(s).
The function p3(s; T, 6, @) for the two typlcal cases discussed
previously are also sketched in Figs. 1 and 2. The formulas for para-
meters T i=1,...,4, 5 and g, are obtained for sll possible ceses in the
ranges -x € 6 < 0, -n/2 < # < x/2 end 0 < T < ®, The results are listed

in Tables I to VI.

4.3 Time-optimel Controls for the Booster

The state vector x(T) can be rendily computed from equations
(6). Take a typical case as an example:

-3x/4 <6 <0, 1/D< 1< 3/D, §, < g <g (see Fig. 1).

Por this case, the extremsl v(s) is given in equation (14), hence by
integration over [0,t],
x,(*) = D sinh (1/D-7) + D sinh 7-1 + Dln (a + B) - fa + g - 1/(a+p)ID/2
-%,(7) = D cosh (7-1/D) - D cosh ©-D + fa + B - 1/(a+p)] D/2
x3(-r)-1-Dln(a+B).
Leta + B8 = el/D so that x3(1:) = u(T1) = 0, then
xl('r) = D (8inh (1/D - 1) + sinh 7 - sinh 1/D]
‘xz('r) = D lcosh (7 - 1/D) - cosh T - 1 + sinh 1/D)

for 1/D < 1 < 1/D. A further choice of T = 2.5/D reduces the above to
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@(2.5/1)) = D[~ sinh (1.5/D) + sinh (2.5/D) - sinh (1/D)]
sz(z.s/n) = Dl cosh (1.5/D) - cosh (2.5/D) - 1 + sinh (1/D)]

@Ez.s/n) -0 |

Using the results so obtained to solve the original booster problem

stated in equation (3), reverse the time sense once again. Thus the
extremal v(s) now starts from s = T and backs up to s = 0. Since T = -7,
it follows that equation (14) is now replaced by
Dfort>s>t-1/D
-v(8) =¢ 0 for t - 1/D> 8 > 1n (a + B)
-D for 1n (a + B) >8>0
Since dx3/dt = v(t) in equation (4) replaces dx3/d'r = -v(t) in equation
(5), hence x3=u (shown in Fig. 1) now reverses its sign. Thus, the
above example (now t = 2.5/D instead) can be interpreted as follows:
The control
D8, if 2.5/D> & > 1.5/D
u(s) =¢ -1, if 1.5/D> 8 > 1/D '
-Ds, if 1/D> 8> 0
will steer the original booster control system (3) from the initial state

x,(0) = D [-sinh (1.5/D) + sinh (2.5/D)- sinnh (1/D))

x2(0) = D [cosh (1.5/D) - cosh (2.5/D) - 1 + sinh (1/D)]
with u(0) = 0 ta the origin in the minimum time t = 2.5/D" and u(2.5/D) = 0.
This exsmple &lso illustrates the fact that the paremeters 6 and ¢
introduced in the edjoint vector 7| serve as an aid to derive the extremal

v(s) only; they disappear in the final solution of the time-optimal control

problem.

4.4 Meximum Controllable Region

The maximum controllable region is determined by exsmining the



values of x(t) as t = . Among the total of twenty different cases for
large T in Tables I - VI, the boundary of the region for u = 1 can be
determined from the cases of (a) x/2 > ¢ > 2. 3/D< 7 < « in Table I,
and (b) n/2 > g > By 3/D < T < ® in Table VI as follows:

(a) By equations (6), this case ylelds

xl('t) =D sinh (1/D- 7v) + Dsinh 7 - 1

xz(‘r) =D cosh (t - 1/D) - D cosh 7

xX.t{Tt) =
A0 =1
X+l
Thug -————— = -1 a8 T -* @ yhich gives the equation
X2

X, +X,=-lforu=1 (17)
(b) This cese yields |
xl(‘r) = «D sinh (1/D - t) -D sinh T + 1 + D sinh (2/D) -2
xz('r) = =D cosh (t - 1/D) + D cosh 7 + D - D cosh (2/D)

x3('t)=-1+2=1

x; +1-Dsinh (2/p)
Thus xzfﬁ_’_ﬁcosh(m"-las‘t"‘”.

or X, + X, =-1+D (1 - exp(-2/D)]) for u =1 (18)

The boundary of the region for u = -1 can be obtained from other cases,
such as the case of ¢u >g> -n/2, 3/D < £ < ®» in Table I. However, niqce
g(s; v, 0, #) = g(s; 7, x+ 6, x - 9), (19)
known relations will hold if all the signs of X, X and u( = x3) are
changed simulteneously. Therefore, corresponding to equations (17) and
(18), the boundary for u = -1 is given by

-x -x= -1 for u = -1 (20)

=X - X = -1+ D1 - exp (-2/D)] foruz‘-l (21)
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The boundary of the region for -1 f u f 1 can be found from the case

of ¢l >8> g, 3/D < 1 < @ in Table I, which ylelds

(4 (7) = D sinh (1/D-7) + D sinh 7 + DI1/(a+6)-(a*g))/2 + Din (o+8)-x,(x)
.sz(r) = D cosh (7-1/D) - D sinh t - D+ DI1/(e#B) - (a+p)]/2
x3(7) = 1 - Din(a+p)
Since u = X3 and a + B8 = exp (1 - u)/D], the 1imit as 7 = = yields

X, + X, = -u - D {1 - expl- (1-u)/D)} for u=1-D1n (a+ 8) (22)

which reduces to equation (17) if u = 1, and to (21) if u = -1. By the
property of equation (19) and the seme argument, the other boundary equa-
tion for -1 < u € 1 can be deduced from (22) es

~Xp - X, = U - D{1 - expf-(1 + u)/D]} for -u =1 - D 1n (a#B). (23)

1
Equation (23) reduces to (18) if u = 1, and to (20) 1f u = -1. Consequently,
equations (22) end (23) determine the maximum controlleble region (Fig. 3)
for -1 < u < 1. Fig. 4 shows the regions for 1/D = 0.709, which agree

with those* given in Friedlaznd's paper (18] when 2 scale factor of 2.709

for the %, and x  &¢xes are considered.

1l 2
“. THE OSCILLATORY SPACE VEHICLE PROBLEM

In the design of sn cutopilot for & large flexible spece vehicle
the problem of bending moments related to the wind disturbences is of
reletive importence. When the motion-controlling actuator has saturetion
Limits on hoth position znd rcte, the design problem 1s quite involved.
Az ¢ rule, the autopilot should be capeble of meneuvering the actuator

in ¢ most efficient menner while encountering the worst wind disturbance.

¥ 1In ¢ private camunicetion with Dr. B. Friedland of General Preclsiog,
Inc., Little Falls, New Jersey, ve agreed that in Fig. 6 of his peper 18],
the scale of the q, -¢ xis should cerry negetive signs.




Xy
0= — u-D[i-e_(:)-U)
b=-utp[j-g ~LZY]
For —ISusS|
FIGURE 3
X2

FIGURE 4
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Therefore, an initial investigation is the deteminatior; of the worst
disturbance that can be handled by the available actuator in a fixed
time interval. The control inputs generated by the actuator to serve
this purpose are called extremel inputs.

5.1 Problem Formulation

When the angle of attack 1s smell, the longitudinal motion of the
vehicle can be described by a system of linear differential equations.
It is assumed that (a) a pole of the plant trensfer function at the
origin in the frequency domein is cancelled by means of some campensating
device, and (b) the damping is neglibible, and the plant transfer
function is essentially dominated by a pair of almost purely imeginary
poles. Thus the approximate vehicle can be represented by a second order
undamped oscillatory system. This approximetion is allowed for many
flexible vehicle systems. For the convenience of analysis, the control
variablé is treated as an augmented-system state variable, and the

equation of motion is normelized as follows:

ax/at = x(t) = Ax(t) + bv(t) on 0 < t < ty (24)
where -
010 0
g el .
x = | x = Ix s V=, A= "1]-2 0 1} ,b= |0},
X3 u(t) 0 00 1

xl = normalized plant position, u(t) = normalized thrust deflection with
lu] <1, v(t) = normalized thrust deflection rate with |v| < x/k. The
value of k 18 greater than or equal to 2, which allows the extremal
control to enter upon and exit from its bound once every half cycle of
the oscillation. The tﬁree-dimensioml coordinate system is so chosen
that the origin is an equilibrium state. It is required to determine an

extremal v(t) which steers the system (24) from the origin to 2 furthest
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voint x in a given direction in a fixed time t. This 1is again a bounded
phase-coordinate control problem and all known results on this type of
problem apply.

By the same argument, which was based on Gemkrelidze's [1,2] result,

the "total adjoint vector" p{t) must satisfy the relation

. -A' p(t) , if |x. 1 <1,
() = { 3
-A' p(t), 1if !x3| =1,

where ()' = transpose of () and

- 01 0
A= =1 0 O
0O 0 0
Thus
v(t) = £ sgn [p(t)’ b ]
in which

—
| +1, 1f Py > 0,
sgn p, = o, ifp3=0,
Furthermore, p3 is allowed certain jump discontinuities at endpoints of
intervals where |x3| = 1; and p.); = O vhenever |x3| = 1.
5.2 The Extremal Controls

Let K(t) = {x(t)]|x(t) = f: Hlt-8) bv(s) ds, |x3! <1, |v| < n/x}

be a set of attainability at time t. The trensversality condition implies
that for every unit vector T in R3 there is a state vector x corresponding
to a point on the boundary of K(t) for a fixed t such that the projection,
P, of x onto 7| 1s a maximum. Moreover, the corresponding unique admissible

extremal v(s), vhich maximizes P, steers the system (24) from the origin
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to the furthest point x in the direction M in a fixed time t. Russell's
sufficiency condition [9] shows that T is the adjoint vector at time t,

and v is the minimel-time control.

Let
cos 8 cos ¢
M= |stne cosg| , lo|l <=, |g| <n/z,
sin g
then

P=cos¢fz {cos 6 - cos(t + 8 - 8) + tan ¢] v(s) ds

The extremal v which maximizes P can be determined by inspection for
every fixed 6, ¢ and t. Since P(s; t, 6, g) = -P(s; t, = + 6, - &),
it suffices to consider only half of the range of 6. Figure 5 shows

a typical case of k = 2.5, 31/5 < 6 < hx/5, with 11x/5 < ¢t + 8 < 1kx/S.
The form of extremal v(s) is

(a) for n/2>g> tan™t [cos(6x/5 = 6) - cos 8] >0

/" 2.5/x, 1£0< 8 < 2(t 4 0)/3 - 221/15 = 8,

-2.5/x, 1if 8, <8< L(t +0)/3 - 38x/15 = T
-v(s) = 0, 1f 1) <8 <t - lbx/5 =1

2.5/, 1f 1, <8< %,

2

or
(v) for tan™t [cos(6x/5 — 8) - cos 6] > ¢

> -’c.an-l[cos 6 - cos ((2n + 6)/3)]

ﬁ.s/n, if0<s<2(te+ 0)/3- 221/15 1
L <8< b(t+0)/3-38/15 = 1,

-v(s) = j 0, 1f11<s<t+e+cos"ltcose+tan¢]-2n=

T2

2.5/n, 1£ 7, <8<t + 06 - cos™! [cos 6 + tan 9] = 8

tz.s/n, ifs,<8<t,

2
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or
(¢) for -tan"ltcos 6 - cos ((2x » 8)/3]> g > -x/2

/2—.5/1, 1If0<s8<2(t+06)/3-22r/15 = 8y

-2.5/%, i 8. <8 < 4(t ¢ 6)/3 - 38x/15 =«

1 1

<s<t-h(n-e)/3=12

-v(s) = < 0, if 7,

2.5/x, if 1, <8< t-2(x-06)/3=3=8

2 2

Qs/u, its, <s<t.

The same procedure was carried out for all possible ranges of 6 and
t. It was found that, in general, the extremsl v(s) reaches zero and
leaves zero as often as the length of t permits. Denote the time at

which such events occur by Ty i=1, 2, ..., 2N, and let To = 0, Tom1= b

Furthermore, let

0o, 1, ..., N;

|x3(s)| <1, if 1, <8< T, ., 1=

and

|x3(s)| =1, 1f Ty <8< Tpu, 0, Loy KoL

Then

<sg<rt 0, ..., N;

21417 1=

dp3/ds = d¢3/ds for 7,

and

p3(s)=0for'r <g<71 eeey N-1;

2341 S 2g+2? 970
vhere ‘t3 is & component of ¢ satisfylng dy/ds = -A ‘4. As indicated in
Section 4.2, choosing p3(s) = t3(s) - ¢3(1'21+1) for 1, < s < Ty .05
1=0, ..., N, ylelds p3(s) being zero and continuous at v,, ., and
consequently the jump conditions must be satisfied et Toyr i=0, ..., N-=1l.

Since T 1s the unit adjoint vector at time t, p3(t) = 13(1;) = 113 = sin ¢&.
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Therefore
cos(t-121+1¢6)-cos(t-s¢6), 1f 7, <8< Tp 09
p3(s;t)6’¢)
cos @ = 19 1 Ty S8 < Topp
cos 6 - cos(t+6-8) + tan ¥ + 5(tan g, -tan g),
if TZNS 8 < t,
where

1=0, 1, ..., N-1,

fu(t)] <1

0, if !x3(t)|

!u(t)‘ = l,

1, if lx3(t)l
and
Q’o = direction 1imit for T at which p3 has a jump discontinuity
(;250 18 a real number). Thus p3(s; t, 6, #) has at most one jump
discontinulty st s = t which happens only when |x3(t)1 = 1. The explicit

form of extremel v(s) cen now be expressed as

v(s)

Alx

sgn [ p3(s; t, 6, ¢)/cos @)

Lpr py(s5 t, 6, )]

In Figure 5, the function p3 for the typical céae is also sketched.
The formulas for paremeters Ty i=1, 2, ..., 2N, 5, and ¢° are determined
for all possible choices of k > 2, 0<6<x, |g| <=x/2, ana0< t <o,
All the results are tabulated in Tables VII end VIII. To use these tables,
first locate the Case Number from Tables VII for the appropriate ranges of
kX, t and 8. Then on TablesVIII, for every Case Number and every range
of g, a set of parameters of Ty =1, 2, ..., 2N, 8, end ¢o are given.
6. CONCLUSIONS

The analysis presented in this report is a direct application of the
optimal control theory. The scheme, wvhich is based on the necessary and

sufficient conditions of the optimal control with bounded phase-coordinate
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mekes it possible to express the control as an explicit time function.
In the example of the unstable booster control problem, the results

are tabulated and sketched for a camparison with those in the published
literature [18, 19). The investigation of the oscillatory space vehicle
reveals the structure of the extremel control variable, which oscillates
in accordance with the oscillation of the controlled vehicle.

7. PLAN OF FUTURE WORK

The immediate step will be a study of en underdamped oscillatory
plent with bounded amplitude and rate control. The investigation will
yield the nature of the time-optimel control function for a process with
& palr of camplex conjugate charecteristic roots.

At this point, the research can be divided into three perellel paths:
() extend the study to the same processes but with integral quadratic
cost criteria, (b) independently simulate the same problems on & computer
and compare the date so obtained against those from analytical results,
and (c) study the same time-optimel control problems analyticelly except
that one of the state variables be also bounded (so fer the bound is only
applied to the eugmented state variable, viz. u = x3). Gamkrelidze's
[1,2]) necessery conditions imply that the adjoint solution has certain
Jump discontinuities. However, his results do not indicete how many
discontinuities will occur. So far in all our investigations, only
one bounded stete variable is involved. The results indicate that there
is at most one discontinuity which can be arrenged at either the beginning
or the end of the time interval. It is therefore conjectured that the
number of jump discontinuities in the adjoint solution is the seame as
the number of bounded state variebles. This conjecture remains to be

shown in the above study (part (c)).

Next, the investigation of a bounded phase-coordinste problem having




s

one reel end a pelr of complex conjugate cheracteristic roots will be
started. It is intended to develop an algorithm for the time-optimal
control problem first, and then an algorithm for the problems with inte-
gral quedratic cost criterlia. These algorithms will be programmed on &
computer, and the results evaluated.

The simulation will agsin be carried out in the followlng order:

(2) construct anslog simuletion of plant and controllers, (b) develop
block diagrams of controllers sultable for future mechanization,

(c) develop simuletion, analog and/or digital, suitable for testing of
practicel control systems, (d) compare with the results from analyticel
expressions, and (e) test various ideas for simplifying and approximeting
the controller.

Finally, the same steps of investigation will be applied to the same
cless of control problems for linear time-varying processes. If data
are available for precticsl systems, these systems will first be approx-
imated by third-order systems, then camputed and simulated by the methods
developed in this research. A careful check of these results will

determine the relative merit of this research.
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PART C
OPTIMAL CONTROL OF ANTENNA POINTING

DIRECTION SUBJECT TO RANDOM DISTURBANCE

1. IRTRODUCTION

After the terget 1s located, the general control pioblem for the
antenna pointing system is the problem of direction lock-in. For the
antenne system which 1s mounted on & space vehicle, the effect ceused by
random disturbances is significant. Basically, the purpose of the antenne
system is the transmission of imformetion. Since the error rete or trans-
mission is directly relasted to the direction pointing error, the controller
should ﬁe designed to minimize the error rate. Graphicaelly, & typical
relation between the error rate and the pointing error is sketched in
Figure 6. The messure of performance of the controller is arbitrerily
classified into four zones, viz., good perfonnance,. fair performence,
trensition, and poor performance. The corresponding zones for pointing
angle in the coordinate system of pointing direction is shown in Figure 7. -
With the measure of performence so defined, the controller 1s essigned to
operate in two modes as follows: |
Mode 1--Mode 1 is initiated by the entry of the pointing angle into the

good performence zone. In Mode 1, the controller generates =

control input which minimizes the probebility of entering the

transition zone at any instant during scme fixed time intervel Tl.
Mode 1 is teminated by the entry into the poor performence zone.

Mode 2--Mode 2 is in effect whenever Mode 1 is not.
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In Mode 2 the controller éenentec ¢ control input which mexi-
mizes the probability of entering the good performence zone at
some instant during some fixed time intervel '1‘2.
Thus the optimization procedure cen be carried out in two seperate

pertis:

(e) Determine the time intervels T, end T,, end the redii r,, r,,
end ra of boundary circles of the four zones (see Figure 7) by mini-
mizing the error rate with respect to Tl and '1‘2, and to r,, Tgs and r3.

(b) In each mode of operation, determine the control input that
minimizes (or meximizes) the appropriate probability.

Part (b) is defined as the optimel control problem of the antenna
pointing direction. An analysis of this problem, which is a direct appli-
cation of the results by Pontryegin and Mishchenko 1], is presented in
the following sections. In the analysis, the random disturbances in any
two smell comsecutive time intervels are assumed statistically independent
and hence the response is a Markov process [22]). The probability distribu-
tion, therefore, satisfies the Kolmogorov's backwerd equation. The
derivation of the genersl form of the equation is included in the Section
2, vwhich also éerves the purpose of review. Section 3 outlines the Mish-
chenko's pursuit problem [1]. The material is not new but an edited sum-
mary of Mishchenko's work. It is intended to help the reader to under-
stand the problem, as well as the method of solving the problem. Section
L gives the problem statement. The procedure of investigetion is arranged
in such & manner that the method used in the pursuit problem can be applied
provided certain conditions are met. The technical development and dis-
cussion on the antenna pointing direction and the height of vehicle con-
trol problem are given in Section 5 and the canclusion of the investigation

in Section 6. The flow charts of computer programs for evaluating surface
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integrels and solving Fredholm equation of the second kind are included

in the Appendix. Section 7 outlines the plan of future work.

2. GENERAL FORM OF KOLMOGOROV'S BACKWARD EQUATION

In this section the genersl form of Kolmogorov's backward equstion
and its derivetion ere discussed. The purpose of this section is to
outline the essentisl properties of rendom processes thet are governed
by the equation. With sdditionel conditions imposed on the random dis-
turbances, the genersl form reduces to the familiar beckward diffusion
eque tion.

Consider the process whose dynamics sre described by the differ-
entlal system

dx = f(x,t) at + dn (25)
where x and@ n ere the m-dimensionzl stete end disturbance vectors, res-
pectively; f(x,t) is sssumed differentisble with respect to both x and t
almost everywhere. In & small time interval dt, the change of state cen
be written as [22]

5x = P(x,t) 5t + dn + 0(5t) (26)

in which 2(8t) is such thet lim %—iﬁ) = 0. It is assumed that the
5+t=0

disturbances Bln and Szn in any two smell consecative time intervals
Slt 2nd 82t ere stetistically indépendent. Let 5n = Tdt, fhen the
essumption is equivalent to the condition that the T-process has inde-
pendent increments. Intuitively the x-process is Markovian since the
5x 1s affected by the value of x &t the end of the previous time inter-
val but not the value et any instant prior to that end point. For

lineer systems, the necessary condition for X-process being Markovian

is given in the following theorem.
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Theorem 1

Consider the linear process in which the variation of the state in
a8 small time interval is

Bx = A(t) x 8t + c(t) M(t) 5t + 0o(5t) (27)

where A(t) and C(t) are messureble metrices on [to,tl] with eppropriate
dimensions. If the x-process is Markovian then the disturbance N-process
has independent increments.

The proof is sketched es follows*. Let X(t,T) be an n by n matrix

setisfying the relations

a
T X(t,to) = A(t) X(t,to) for t, > t > t_.

X(tofo) =1

vhere I is en identity metrix. Then

t
x(t) = X(t,to) x(to) + It X(t,7t) c(7)n(1) ar (28)
(o]

from which the covarience metrix of the x-process &t & sequence of time
instants cen be computed. By applying Doob's theorem on Markov process
in the wide sense [23, Theorem 8.1, p. 233], the Theorem 1 ¢an thus be
proved.

Let Qn(iv) = E[eiv'n]
be the charecteristic function of n where v is en arbitrary vector heving the
same dimension as that of n, E denotes the expection valﬁe end ()' = trans-
pose of (). Let F = F(x,t,iv,5n) be a functional setisfying QW QSn(iv),

then F is called 8 disturbence functionsal.

¥ The proof is suggested by Dr. Glenn E. Bexter, Professor of Mathematical
Sciences and Stetistics, Purdue University.
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Lemma 1

The disturbance functional is esdditive 1f* the noise hes independent

increments.
Proof [22]
’
ivi ¥ & n
QEB n(iv) =E e k
k
P 4
- TE elV Skn
k
1 e’ét Fk
k
- e5t by Fk
Lemma 2

Let g(z) be some arbitrary functionesl having all its partial derivatives
where z is an arbitrary vector. Let VZ = d/dz. Then E¥(z+n) = Qn(VZ)Q)'(z).
Proof [22]

Only the case of scalar z end scalar n will be shown. The vector

case can be extended by & similar procedure. Compute

(-]
A () =g ) B[ " (1v)%/x ']
k=0
The Taylor series of @(z+n) ebout z is

#(z+n)

"

Y @k 1) a* g(a)/ac"
k=0

5 X v‘; #(z)/x !
k=0

"% g(2)
hence E g(z+n) = !n(VZ) #(z).

A lineer differential operetor will now be defined which describes
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the general form of Kolmogorov's beckwerd equation. Let t = 8 + &8 > s,
y = x(8 + 88), G = a fixed Borel set, G < R'. Let P(G,t|X,s) be the
trensition probability function, 1.e., Prly € 6|x(s) = X1, and p(y,t|%,s)
be the corresponding density. For & smell time interval (s, s + 5s) ’
vy = x(s + 88) = x(s) + 58X + 0(6s) and hence by equation (26),
#(y) = ¢ (x(s) + 8% + 0(58))
=g (% + £(X,s)58 + 8n + 0(58)). (29)

Since E g(y) = j;m #(y) o (v,t]%,8)ay

Hence by (29), .f a(y) p (y,t'?c,s)dy =B g(:? + f(:?,s) 58 + 5n +0(%s)).

R (30)

By Lemme 2 and the definition of the disturbance functionel F,

8 .(7,) #(z)

E g(z + 5n)

s r(i,s,vz,an) o(2)

1+ &8 p(%,s,vz,Sn) + 0(58)] 2(z).

A A
Let z = x + £(x,s)5s, then (30) becomes

_Yﬂm@(y)p(y,tiﬁ,s)dy =1+ 3s F(Q,S,V}?,Sn) + o(88%)) @ (x + £(X,8)88).

But by the Teylor series expansion about x,
p(% + 2(3,5)88) = p(%) + 85 2(%,8)" v p(%) + O(5s")
hence

IRMG(Y)P(Y;t'.;E:S)dY = ¢(£) + 58[:{'(2,8)’72 + F(S\(,s,vﬁ,ﬁn] ¢(£) + 0(&s)

= B(X) + 85 U(y oy B(X) + O(8s) (31)

" ¥ A
vhere U(Q,S) = f(X,S) v;{ + F(x,s,Vi,Sn)
1s the linear differential operstor, f(i,s)'vi is the system operator and

F(:‘c,s,Vﬁ,Sn) is the disturbance operator.
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Theorem 2

If5n =T Sk n where 5 _n's are stetisticelly independent, then

K k

_ A 1 - hod o
Urz,s) = T(%8) 75 + = F(3,700 ).

Proof This is & direct consequence of Lemme 1 end the definition of F.
Theorem 3

The Kolmogorov's beckvard equetion

_ A P(g:t‘xys) - U

A
s (}?,S) P(G,t‘x,s)

holds for s‘f t with terminal conditions

. 1, if y€Gas s~ t,
P(G,tl%,s) = {
0, if y G as s — t.

Proof (22]

Let % = x(s) €EHC R and 7 = x(s-8s). Then

P(c,tlz,8-58) = [ P(G,t‘?,s) p (%,s1z,s-88) ax.
‘m
R

By (31), P(G,t|z,s-88) = P(G,tl%,s) - &s U(z’s_ss)y(c,t\;?,s) + 0(5s)

- P(Glt‘;)s) - PLG,tlz,s—&s) -

or
os

p(c, t|%,8) + 288)

U( B8 °

z,8-58)

Since z = x and 9(8s)/5s = 0 as 58 —~ 0, hence

3 P(G,tx,s) A A
- S = U2 o) P(G,tlx,s).

The terminel conditions are satisfied by triviel reasons since in zero
time interval, the probability of change of state is zero.
Theorem 4

A
Let P = !(G,t‘;,s), 5X, = J th component of vector 8x, and

J




-

5k

. .
b (X,8) = lim (E 5% 8% )/8s. If the disturbence 5n in any emsll
Jk Y Badi¢] J

time interval is statisticelly independent end gaussian distributed with
zero mean, then the Kolmogorov's equation becomes & backwerd diffusion

equation

- 4
X i gf( )s)n +i22ka(x,s) m

wvith the same terminal conditionms.

Preof

By equation (26),

3:33 [fJ 58 + éfgkf o(§§;;rfk 8s + dn_+ 0(3s))
s

= fJ o + £, 8nJ + Snjbnk/Bs + 0(bs)/3s

A
In a small time interval &s, £(x,s) 58 is the meen of 5x f23, p.273],

hence E fj Snk = fJ E 5nk. Therefore

A A
/
E Bxdbxk,SS

U

fJEBnk + fk Ebn'j

E 8n Snk/SS + 0(5s)/2s.

+ EBnJBnk/ﬁs + 0(88)/3s

A A
Consequently, b (x,s) =1lim (E ijﬁxk)/Ss
ds = 0

= lim (E 8n,5n )/5s
6 = O J g
Since 5n is gaussian distributed with zero meen, then

’
iv Bn
.Sn(iv) =Ee

i

E expl T (iv,) 8n, )
A U

E{ ? FE (1v,)8n ]r/r 1}
=0 h

"

1+ : iv, E 5nh + % § i (iv )(1v ) E dn Snk +..,
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=1+%% iv, )(i E6n5
jk( )(iv,) m

But log (1+w)=w-%w2+1/3w3- ... for lul <1

Let Osn(iv) = 14w

Then w=%?2(iv )(1v )E SnSnk-l-
Jk

Therefore log 8. (iv) =% % (iv,)(iv,.) E Bn, n_ + ...
5n ek 3

By definition, log an(iv) = s F(X,s,1iv,5n)

hence, by replacing iv by V;\( end teke 58 - 0 as & limit,

A
F(x,8,94,7n) = 1lim 3T T E(sn 5n, /68) S’T
x 56 =0 Jk " *x
3 (%,5) Waz
=3LZb,(x,s
jk 9K X 0%
P
Thus, —ﬁ = U(J‘E,S)P
= [2(%,8)'73 + F(%,5,%,%n)] P
=2f (X,S)Sw— +‘i"2b3k (x,s)ﬂ)?-k
Corollary

Let 8n = N 88. If N-process is a Wiener-Leoy process, then the

"~ backward diffusion equetion holds.

‘M Since M-process has stationary independent increments, and T(s)

is geussian distributed with zero mesn, it is equivalent to the condition
thet 5n in any small time intervel 1s stetisticelly independent &nd gaussian

distributed with zero mean. Hence the proof follows Theorem k4.




3. THE PURSUIT PROBLEM [1] ' ;

The pursuit problem cen be steted as follows. Let y be the m-dimen-

sionel stete vector of & system defined by

{dy,.’dt = £(y,t,u)

‘Wo) = ¥
vhere u is the k-dimensionsl control vector end f the m-dimensionel
measurable vector with k < m. Let z be the state vector of 2 rendemly
moving point. Given thet z is a sample function of & Markev precess

with transition density

e, cle,0) = P, )| 2( o) (¢l®)

vhere the right side of the equation 1s the conditional prebebility density
associated with the event z(t) = { given the event z(0) = € (z(t) end
z(o) are random varisbles while { and £ are numbers). It is assumed that
the Markov process is continuous with probability 1, and sufficient pertisl
derivatives exist. The problem is to find u which maximizes the probebility
thet

z(s) - y(x)<e
for a given ¢ > O and for some T ¢[0, T] where T is given.

This problem is solved &s follows. The functional wu(c,t,f) ie defined

as the probebillity thet the randomly moving point is ceptured between times
g end T given thet z(¢) = ¥, and thet the control function is u. If the
functional *u were aveilable, it weuld be streightforwerd te apply the
meximum principle, and thus solve the problem. The following is an out- .
line of Pontryegin's approximetion to ﬁu(o,t,r).

The first step is to show that wu(a,!,r) is a solution to

2
al Ay L
2, S~ b - +-SH a L 0
Y] L P15 BF_AE J.Ti N
1, P !

subject to the boundary conditions




5T
*u(‘f, £, 1)=0
*u(a: ?-: T) l Sd= 1
where Sg = surface defined by § * - y(a)ll = €
£ = z(0),
(6,M) = lim g (¢,-1,)p(¢, o 17, 0-80)ac,
8q\o Aaﬁoﬁj!c-n|<a 17
1
’ = = = ’ “) -7 )d

ORCRIEIRTN Ip ERUNCERICGRRLCEARRE:

for ell & > O,

rbi J(o,'ﬂ)'j is continuous, bounded and positive definite,

ai(o,'ﬂ) = 0(expll M) 1s continuous.
A solution is then obtained in the form, with z(0) =
¥,00,Z, M = (0, Z, T) + of™?)
where m is the dimension of the state space. For the case where bi,j is
independent of g or ¥, I 1s given by

r(o, Z, T) = T (9, Z, T) + r, (o, 7, T)

where

F ( ,E ) = a
o a1 Ts, el N 22

I a(T‘r A ) exp{-M¢-8+y(a)1'le, ,JC-8ry(dY/y g)}
# rea(v-) 12 (¢Te, ] NP2/

T r v,
ryen) = [ {] g atslea E{a(sm - tly(e), 01} —Lf,,-—-) av}as
i

}‘i = eigenvelues of rbi.j]’
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J v, (W) a8
Q= S
oM
8 rm-Z(ﬁ)

[8,,] = [o,,17,

V(M) = eigenfunction satisfying

1) = Is L pm_§°zﬂ". = oM as, (1, W e 5)

- - 2
(M) = (27, /e,
8 = a continuous closed surface defined by
7 12 2

8 = angle between the vector p from 1 to 1 and the normel to S at 1 € S.

4. PROBLEM STATEMENT AND METHOD OF INVESTIGATION

This section states the genersl problem of interest. The method of
investigation and the preperatory computetion of transition densities are

also presented.

4.1 Problem Statement

Let the motion of the vehicle be described by a system of differential
equations. It is convenient to normelize the equations as
ax = £(t,x) dat + B(t) u(t) dt + c(t,x) dn | (33)
x(to) =X
wvhere x is the system state vector; u is the control input vector; n is
a sample vector of a random process; f is the system-perameter vector
vhich 1s assumed to be differentiable with respect to both t and x almost

everywhere; B and C are matrices with appropriate dimensions. As a rule,
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the dimensions of vectors u &and n sre lower then thet of stete vector x.
It is kxnown thet if the disturbances dn in eny two smell consecutive

time intervels ere statistically independent, then the response x to the
system (33) is & Merkov process (22]. As shown in Section 2, for Geussien
disturbance An in eny smell time intervel As, the trensition probebility
function P(G,tly,s) where vy = x(8), setisfies the backwerd aiffusion

equation

2
RN CURE OROIE- 3)) by yle) YV?TJ -0 3
1 1

for t > 8 > 0, in which *

Z Z Cyy(8:Y) chJ(_”’) An, Bn,

As

b, ,(s,y) = 1lim
13 As =D

for e fixed t and & fixed Borel set G.

For the purpose of discussion, essume the system stete is in &

situation such thet the control input u is in Mode 2 of operation as

defined in Section 1. Let vu( tx, b+ Tz) be the probebility of entering
the good performence zone in the finite time intervel ft,to + TZ]’ As
outlined in Section 3, Mishchenko [1] showed thet if the stetistics

of the x-process are described by equation (34), then ¥ = tu(t,x, by + T2)

satigfies the same equetion

- z{f(t x) + B(t) u(t)}, rl xS zb (t,x)sg‘f;_;zo(ﬂ
i

wvith boundary conditions tu(t,i,to + Tz) = 1 for all t, and

#u(to + '1‘2, X, to + '1‘2) = 0, where “ %] = r, and | i“> r

3 3

The problem is to determine ¥, vhich is & functionsl dependent on u,

end choose & control u thet meximizes §.
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4.2 Method of Investigetion

In order to epply the results of the pursuit-problem (Secztion 3),
the method of investigation is ontlined as follows. First of ell, the
system is assumed to be lineer. To be more precise., it is desired to
determine the control vector i which meximizes

pr T x(t)| < TQ] for come t € rto, t )

suhject to

¢ ax = TA(t) x + B(t) a(t)lat + ¢ (t.x) an

1

vhere x is en m dimensional vector,

x(2) = x

A is rnm by m meas:ueble matrix,

n is #n h < m dimensionel vector,

B is en m bty h measureble metrix,

n 1s # k < m dimensional semple vector of & rendom process.
C is en m Ty kX meesureble matrix.

T, end X ara given es part of the protlem.

For this system. -ompite the trensition densities of the 2z-process defined

by
{ daz = A(t) z 4t + c{%,x) dn
- (36)
z(2) = x
Next, compite the control vector 1 to meximize
7 - -‘. %
Pr rn 7(t) j(t)" < ry for some t erto, t o+ T]
snkject to
dy = A(t dt - B(t) v 4t -
[ 3 (t) y (t) o (3{)

y(2) = 0
The method of epproech is motiveted by the edventrge of the super-

position property of lineer systems A proper transletion of the
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zoordinete-system reduces the present problem to Mishchenko-Pontryegin's
pirsait problem which is sumerized in Section 3. Thus, if the statistics
of the 7-process is in sg.ecement with the hypotheses for the pursiit
problem. then the known res:ults cen be used to complete the solution.

The :ompiutetion of the tisnsition densities of 7-process. whic~h is
required for the evelustion of Pr [nz-y“ < r3], is presented in Section 4.

4.3 Compnutstion of Trensition Densities

Consider the stochestic'diffe“ential system
az = A(t) - at + c(t) dn
‘f (38)
vhere 7 is en m dinensionel vector,
A is en m vty m measureble mrtrix
Cis enm by h measureble metrix,
n is en h dimensionel (L < m) semple vector
of & rendom process with independent and orthogonel increments.
According to Doob r23], the integrel I C(t) dn in the usuel Stieltjes
sense does not exist with prohahility one tecause the semple fanctions
of proresses with independent increments zre of unhounded variation with
probebility one. This integrel. however, cen be redefined es e stochesti~
integrel r23] s0 thet it does exist. Under this definition, the limit
of the sequence of Stieltjes sums exists in & "limit in the mesn" sense.

The solution of system (38) is known es [23]

t
2(t) = [ 8(t, ©) c(r) an(v) (39)
(o}
where Q(t, 7) is the m by m continuous metrix setisfying
d &(t 8(t
a‘t— y T) = A(t) ? s T))

8(t, 1) = identity metrix

2

-
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end the integrel in (39) is e stochestic integrel.

To fecilitate the discussion let
|
Ty = JE 8(M, 1) c(7) dn(7)
and
1 1i-1
Iy = ‘:‘:o &M, 1) o(ry) Mn(r, ) - n('rk)].

where
= = F
11 ] end 10 s

sre random veriebles. The trensition density

Pr(r,) | 7(7,) (z, | 2) = pitlfz x e (7, -2, 1 7)) (49)

where the p's are defined in Section 3.

i . .
The sequence { I,_.n } ~onverges to I’r ina £.1i.m sense as described

by Doobr r23]